Research Areas

Biomolecular Science and Engineering

Biomolecular science is one area in the life sciences which focuses on the understanding of cellular processes at the molecular level and modifications of extracellular matrix (ECM). Developing an understanding and using this knowledge for manipulating cell and matrix processes in order to predict, prevent or ameliorate medical conditions are key components of biomolecular science and engineering. Research in biomolecular science deals with applications including drug development and delivery, proteomics, and tissue engineering.

Participating faculty
Chan, Cramer, Dordick, Gross, J. Hahn, M. HahnLinhardt, Swank, Thompson, Vashishth, and Wan.

Biomedical Imaging

Biomedical imaging produces internal images of patients, animals or tissue samples for basic research, preclinical and clinical applications. The focuses are on x-ray and optical tomographic imaging, multi-modality techniques, and their utilities of fundamental, translational and healthcare significance. Research and training involve the entire process from innovation, instrumentation, to validation for real-world impact. We have close collaborative ties with medical schools, and are in strong academic-industrial partnerships such as with the GE Global Research Center.

Participating faculty
Chan, Intes, Wang, Xu, Yan, and Yazici

Musculoskeletal Engineering

The musculoskeletal wellbeing of aging individuals is a key factor affecting quality of life. As medical advances continue to extend people's lifespans, the need for musculoskeletal engineering becomes paramount. In response to this critical need, our faculty are investigating, modeling and/or regenerating bone, cartilage, intervertebral discs, muscle, tendon, ligament and skin. This program promotes musculoskeletal research and discovery from molecules to mice to humans. We bring together and prepare future musculoskeletal engineers with expertise in multiscale biomechanics, biomaterials, cell and tissue engineering, in vivo matrix injury models, stem cells and regenerative medicine, and proteomics.

Participating faculty
Chan, Corr, M. Hahn, Ledet, Swank, Vashishth, and Wan.

Neural Engineering

Injuries and disease to the nervous system affect all age groups and cost billions of dollars every year in medical expenses and reduced quality of life. Using neurological engineering – a combination of neuroscience and engineering – our faculty and students are developing new approaches to address the functional repair of both large-gap peripheral nerve and spinal cord injuries. This program prepares engineers with training in the areas of cell and tissue engineering, molecular control of neurite guidance, complex multi-cellular models of injury and repair, proteomics, neural stem cells and rational biomaterial design.

Participating faculty
Gilbert and Thompson

Systems Biology and Biocomputation

Systems biology is the coordinated study of biological systems, at the cellular, organ, or whole body level, which aims at achieving a systems-level understanding of biological processes. Systems biology lies at the interface of engineering, computer science, and molecular/cell biology and involves sophisticated computational and high-throughput experimental approaches. One of the key outcomes of systems biology is the development of biomedical models describing the system. These models can be used to test hypotheses in silico, or to design drug targets or intervention strategies.

Participating faculty
De, J. Hahn, Wan, Wang, and Yan

Vascular Engineering

Vascular disease is the leading cause of heart attack and stroke worldwide. Our researchers are dedicated to development of novel diagnostic and therapeutic agents needed to alleviate the pain and suffering associated with these diseases. Faculty and their students are integrating bioengineering tools with vascular biology to understand the pathophysiological mechanisms of vascular disease, and they are developing methods to guide blood vessel regeneration. Researchers apply multidisciplinary approaches from biomechanics, biomaterials, molecular imaging, cell and tissue engineering to study vascular development and disease at the molecular, cellular and organ levels.

Participating faculty
M. Hahn